论文标题

假想网络:学习对象探测器没有真实图像和注释

ImaginaryNet: Learning Object Detectors without Real Images and Annotations

论文作者

Ni, Minheng, Huang, Zitong, Feng, Kailai, Zuo, Wangmeng

论文摘要

没有现实中培训的需求,人类就可以简单地基于其语言描述来轻松地检测出已知的概念。毫无疑问,通过这种能力赋予深度学习能力,使神经网络能够处理复杂的视觉任务,例如对象检测,而无需收集和注释真实的图像。为此,本文介绍了一种新颖的挑战性学习范式虚构的对象检测(ISOD),其中不允许真实的图像或手动注释用于训练对象探测器。为了解决这一挑战,我们提出了想象网络,这是一个通过结合预审计的语言模型和文本对图像合成模型来合成图像的框架。给定类标签,语言模型用于生成带有目标对象的场景的完整描述,以及部署的文本对象模型来生成照片真实的图像。使用合成的图像和类标签,可以利用弱监督的对象检测来完成ISOD。通过逐渐引入真实的图像和手动注释,假想网络可以与其他监督设置合作,以进一步提高检测性能。实验表明,与经过真实数据训练的相同骨架的弱监督对应物相比,ISOD中的假想网络可以(i)获得约70%的性能,(ii)通过将想象力的网络与其他监督设置合并,在实现先进的效果或可比性的同时显着提高基线或可比性的性能。

Without the demand of training in reality, humans can easily detect a known concept simply based on its language description. Empowering deep learning with this ability undoubtedly enables the neural network to handle complex vision tasks, e.g., object detection, without collecting and annotating real images. To this end, this paper introduces a novel challenging learning paradigm Imaginary-Supervised Object Detection (ISOD), where neither real images nor manual annotations are allowed for training object detectors. To resolve this challenge, we propose ImaginaryNet, a framework to synthesize images by combining pretrained language model and text-to-image synthesis model. Given a class label, the language model is used to generate a full description of a scene with a target object, and the text-to-image model deployed to generate a photo-realistic image. With the synthesized images and class labels, weakly supervised object detection can then be leveraged to accomplish ISOD. By gradually introducing real images and manual annotations, ImaginaryNet can collaborate with other supervision settings to further boost detection performance. Experiments show that ImaginaryNet can (i) obtain about 70% performance in ISOD compared with the weakly supervised counterpart of the same backbone trained on real data, (ii) significantly improve the baseline while achieving state-of-the-art or comparable performance by incorporating ImaginaryNet with other supervision settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源