论文标题

Q-TOD:以查询为导向的对话系统

Q-TOD: A Query-driven Task-oriented Dialogue System

论文作者

Tian, Xin, Lin, Yingzhan, Song, Mengfei, Bao, Siqi, Wang, Fan, He, Huang, Sun, Shuqi, Wu, Hua

论文摘要

现有的面向任务的对话系统通常很难适应看不见的域,而端到端系统在实践中被大规模的知识库所困扰。在本文中,我们介绍了一个新颖的以查询为导向的对话系统,即Q-TOD。对话环境中的基本信息被提取到一个查询中,该查询进一步用于检索响应生成的相关知识记录。首先,由于查询是自然语言的形式,而不仅限于知识基础的模式,因此在Q-TOD中明显缓解了域适应性问题。其次,当查询使知识检索与世代的脱钩时,Q-TOD摆脱了知识库的可扩展性问题。为了评估所提出的Q-TOD的有效性,我们收集了三个公开可用任务的对话数据集的查询注释。全面的实验验证了Q-TOD优于强大的基线,并在这些数据集上建立了新的最新性能。

Existing pipelined task-oriented dialogue systems usually have difficulties adapting to unseen domains, whereas end-to-end systems are plagued by large-scale knowledge bases in practice. In this paper, we introduce a novel query-driven task-oriented dialogue system, namely Q-TOD. The essential information from the dialogue context is extracted into a query, which is further employed to retrieve relevant knowledge records for response generation. Firstly, as the query is in the form of natural language and not confined to the schema of the knowledge base, the issue of domain adaption is alleviated remarkably in Q-TOD. Secondly, as the query enables the decoupling of knowledge retrieval from the generation, Q-TOD gets rid of the issue of knowledge base scalability. To evaluate the effectiveness of the proposed Q-TOD, we collect query annotations for three publicly available task-oriented dialogue datasets. Comprehensive experiments verify that Q-TOD outperforms strong baselines and establishes a new state-of-the-art performance on these datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源