论文标题
$α^{\ prime} $ - 硼苯纳米琴中可控的巨型磁电阻和完美的自旋过滤
Controllable giant magneto resistance and perfect spin filtering in $α^{\prime}$-borophene nanoribbons
论文作者
论文摘要
通过使用非平衡绿色的功能(NEGF)方法和紧密结合(TB)近似,我们研究了Zigzag $α^{\ prime} $ - Boron nanoribbon($α^{\ prime} $ -BNR)中的旋转传输的完美控制,作为borophene的必要结构。已经发现,当$α^{\ prime} $ - BNR暴露于平面外交换磁场时,在特定的能量范围内,旋转和旋转状态都会发生旋转分裂。因此,可以通过外部后门电压来调节传入电子的能量来控制电流的自旋极化。我们专注于$α^{\ prime} $ - BNR的边缘操纵,由铁磁性(FM)或抗铁磁性(AFM)交换场,这会导致出现巨型磁电阻和完美的旋转过滤。局部电流提供了纳米替比电流的自旋分布的最佳图片。为了观察系统对磁条的接近效应的响应,我们计算了每个位点的磁矩。然后,我们表明在交换磁场存在的情况下应用横向或垂直电场在恒定能中电流的自旋极化提供了另一个控制工具。最后,通过平面内和平面外交换磁场在纳米替比边缘的效果,我们可以控制散射区域的自旋旋转。我们的调查保证了$α^{\ prime} $ - BNR作为一个有希望的二维(2D)结构,用于自旋目的。
By using non-equilibrium Green's function (NEGF) method and tight-binding (TB) approximation, we investigated a perfect control on spin transport in a zigzag $α^{\prime}$-boron nanoribbon ($α^{\prime}$-BNR) as the must semi-conducting structure of borophene. It has been found that when an $α^{\prime}$-BNR is exposed to an out-of-plane exchange magnetic field, spin splitting occurs for both spin-up and spin-down states in specific ranges of energy. Therefore, the spin polarization of current could be controlled by adjusting the energy of incoming electrons by means of an external back-gate voltage. We focus on the edge manipulation of $α^{\prime}$-BNR by ferro-magnetic (FM) or anti-ferromagnetic (AFM) exchange field which leads to the emergence of a giant magneto resistance and a perfect spin filtering. Local current provides the best picture of spin distribution of current in the nanoribbon. In order to observe the response of the system to the proximity effect of magnetic strips, we calculate the magnetic moment of each site. Then, we show that applying a transverse or perpendicular electric field in the presence of the exchange magnetic field gives another controlling tool on the spin polarization of current in a constant energy. Finally, by simultaneous effect of in-plane and out-of-plane exchange magnetic field on the edges of nanoribbon, we reach a control on spin rotation in the scattering region. Our investigation guarantees the $α^{\prime}$-BNR as a promising two dimensional (2D) structure for spintronic purposes.