论文标题
部分可观测时空混沌系统的无模型预测
On higher scissors congruence
论文作者
论文摘要
我们解决了希尔伯特(Hilbert)的第三个问题的更高版本,用于一维几何形状,在较高的维度中,我们将问题降低为组同源性的计算。我们的核心结果涉及剪刀一致性$ K $ - Zakharevich的理论谱系,其同质组是经典剪刀一致性小组的正确更高版本。我们证明了这一频谱是汤姆频谱,其基本空间是山雀复合物的同质轨道空间。相关计算很快就取决于这个更基本的结果。
We solve the higher version of Hilbert's Third Problem for one-dimensional geometries, and in higher dimensions we reduce the problem to a computation in group homology. Our central result concerns the scissors congruence $K$-theory spectrum of Zakharevich, whose homotopy groups are the correct higher version of the classical scissors congruence groups. We prove that this spectrum is a Thom spectrum, whose base space is the homotopy orbit space of a Tits complex. The relevant computations quickly follow from this more foundational result.