论文标题

部分可观测时空混沌系统的无模型预测

QuAnt: Quantum Annealing with Learnt Couplings

论文作者

Benkner, Marcel Seelbach, Krahn, Maximilian, Tretschk, Edith, Lähner, Zorah, Moeller, Michael, Golyanik, Vladislav

论文摘要

现代量子退火器可以找到高质量的解决方案来组合用作二次无约束二进制优化(QUBO)问题的目标。不幸的是,在计算机视觉中获得合适的QUBO形式仍然具有挑战性,目前需要特定于问题的分析推导。此外,这种明确的公式对解决方案编码施加了切实的约束。与先前的工作形成鲜明对比的是,本文建议通过梯度反向传播从数据中学习Qubo表格,而不是推导它们。结果,可以灵活,紧凑地选择解决方案编码。此外,我们的方法是一般的,几乎独立于目标问题类型的细节。我们证明了学习Qubos在图形匹配,2D点云对齐和3D旋转估计的各种问题类型上的优势。我们的结果与以前的量子状态具有竞争力,同时需要更少的逻辑和物理速度,从而使我们的方法可以扩展到更大的问题。代码和新数据集将被开源。

Modern quantum annealers can find high-quality solutions to combinatorial optimisation objectives given as quadratic unconstrained binary optimisation (QUBO) problems. Unfortunately, obtaining suitable QUBO forms in computer vision remains challenging and currently requires problem-specific analytical derivations. Moreover, such explicit formulations impose tangible constraints on solution encodings. In stark contrast to prior work, this paper proposes to learn QUBO forms from data through gradient backpropagation instead of deriving them. As a result, the solution encodings can be chosen flexibly and compactly. Furthermore, our methodology is general and virtually independent of the specifics of the target problem type. We demonstrate the advantages of learnt QUBOs on the diverse problem types of graph matching, 2D point cloud alignment and 3D rotation estimation. Our results are competitive with the previous quantum state of the art while requiring much fewer logical and physical qubits, enabling our method to scale to larger problems. The code and the new dataset will be open-sourced.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源