论文标题
修改的C0内部惩罚分析第四阶dirichlet边界控制问题和后验误差估计值
Modified C0 interior penalty analysis for fourth order Dirichlet boundary control problem and a posteriori error estimate
论文作者
论文摘要
我们对第四阶DIRICHLET边界控制问题的C0内部惩罚分析的L2规范误差估计值进行了重新审查。最佳控制的L2规范估计值是在降低的规律性假设下得出的,并且可以在任何凸多边形结构域中进行此分析。在最小的规律性假设下,基于残留的基于A-tosterii误差界限是为最佳控制,状态和伴随状态变量得出的。估计器被证明是可靠的,并且在本地效率高。理论发现通过数值实验说明。
We revisit the L2 norm error estimate for the C0 interior penalty analysis of fourth order Dirichlet boundary control problem. The L2 norm estimate for the optimal control is derived under reduced regularity assumption and this analysis can be carried out on any convex polygonal domains. Residual based a-posteriori error bounds are derived for optimal control, state and adjoint state variables under minimal regularity assumptions. The estimators are shown to be reliable and locally efficient. The theoretical findings are illustrated by numerical experiments.