论文标题

迈向有效,有效的自我监督的视觉表示学习

Towards Efficient and Effective Self-Supervised Learning of Visual Representations

论文作者

Addepalli, Sravanti, Bhogale, Kaushal, Dey, Priyam, Babu, R. Venkatesh

论文摘要

在最近从手工制作的借口任务转移到基于实例相似的方法之后,自我划分已成为一种视觉表示学习的好方法。大多数最先进的方法在给定图像的各种增强之间都会实现相似性,而某些方法还使用对比度方法来明确确保各种表示。尽管这些方法确实显示出有希望的方向,但与受监督的对应物相比,它们需要大量的训练迭代。在这项工作中,我们探讨了这些方法缓慢收敛的原因,并进一步建议使用良好的辅助任务加强它们,这些辅助任务明显更快,并且对表示学习也很有用。提出的方法利用旋转预测的任务来提高现有最新方法的效率。我们使用多个数据集上的拟议方法,特别是针对较低训练时期的训练时期的提出方法证明了绩效的显着提高。

Self-supervision has emerged as a propitious method for visual representation learning after the recent paradigm shift from handcrafted pretext tasks to instance-similarity based approaches. Most state-of-the-art methods enforce similarity between various augmentations of a given image, while some methods additionally use contrastive approaches to explicitly ensure diverse representations. While these approaches have indeed shown promising direction, they require a significantly larger number of training iterations when compared to the supervised counterparts. In this work, we explore reasons for the slow convergence of these methods, and further propose to strengthen them using well-posed auxiliary tasks that converge significantly faster, and are also useful for representation learning. The proposed method utilizes the task of rotation prediction to improve the efficiency of existing state-of-the-art methods. We demonstrate significant gains in performance using the proposed method on multiple datasets, specifically for lower training epochs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源