论文标题

关于在纤维磁场中的热量分布

On the distribution of heat in fibered magnetic fields

论文作者

Drivas, Theodore D., Ginsberg, Daniel, Grayer II, Hezekiah

论文摘要

我们研究了一个且更高尺寸的强磁化等离子体模型中的平衡温度分布。如果磁场是足够结构化的(从某种意义上说,它是由一个不变的托里(Tori)纤维纤维纤维的,在大多数情况下,磁场线在其上是术语中徘徊的大多数),并且横向横向到Tori的有效热扩散率很小,证明温度分布仅由整个无效的表面上变化良好近似。对于“临界”尺寸的“几乎可以集成”的磁场,相同的结果也具有相同的结果。在这种情况下,根据温度缺陷分布和将磁场的不可融合结构定义了一定数量的非积分性,这证实了Paul-Hudson-Helander的物理猜想。我们的证明至关重要的是,在不变的Tori的完整度量集中,对磁场线的磁场线进行了一定的定量齿状条件,该条件在没有零点的磁场的二维中是自动的,并且在较高的维度中,可以通过磁场旋转变换的二磷氨酸条件来保证。

We study the equilibrium temperature distribution in a model for strongly magnetized plasmas in dimension two and higher. Provided the magnetic field is sufficiently structured (integrable in the sense that it is fibered by co-dimension one invariant tori, on most of which the field lines ergodically wander) and the effective thermal diffusivity transverse to the tori is small, it is proved that the temperature distribution is well approximated by a function that only varies across the invariant surfaces. The same result holds for "nearly integrable" magnetic fields up to a "critical" size. In this case, a volume of non-integrability is defined in terms of the temperature defect distribution and related the non-integrable structure of the magnetic field, confirming a physical conjecture of Paul-Hudson-Helander. Our proof crucially uses a certain quantitative ergodicity condition for the magnetic field lines on full measure set of invariant tori, which is automatic in two dimensions for magnetic fields without null points and, in higher dimensions, is guaranteed by a Diophantine condition on the rotational transform of the magnetic field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源