论文标题

基于视觉的强大车道检测和跟踪在不同的挑战性环境条件下

Vision-Based Robust Lane Detection and Tracking under Different Challenging Environmental Conditions

论文作者

Sultana, Samia, Ahmed, Boshir, Paul, Manoranjan, Islam, Muhammad Rafiqul, Ahmad, Shamim

论文摘要

车道标记检测对于两种高级驾驶辅助系统都是基础。但是,当由于现实生活中的挑战性环境和不利的天气,公路巷标记的可见性较低时,检测车道的可见性很大。大多数车道检测方法都面临四种类型的挑战:(i)光效应,即阴影,眩光,反射等; (ii)自然灾害和不利天气造成的侵蚀,模糊,有色和破裂的车道的可见性; (iii)周围环境中不同物体(雨刮器,车辆等)的巷道标记闭塞; (iv)在车道视图内部的线路上存在令人困惑的车道,例如护栏,路面标记,道路分隔线等。在这里,我们提出了一种使用三种关键技术的强大的车道检测和跟踪方法。首先,我们引入了全面的强度阈值范围(CITR),以提高Canny操作员检测低强度车道边缘的性能。其次,我们提出了两步车道验证技术,基于角度的几何约束(AGC)和基于长度的几何约束(LGC),然后进行Hough Transform,以验证车道标记的特性并防止不正确的车道检测。最后,我们通过沿X轴定义一系列水平车道位置(RHLP)来提出一种新颖的车道跟踪技术,该范围将根据上一个帧的车道位置进行更新。当左或右时,它可以跟踪车道位置,或者两个车道标记部分是部分和完全不可见的。为了评估所提出的方法的性能,我们将DSDLDE [1]和SLD [2]数据集使用分别为1080x1920和480x720分辨率,分别为24和25帧/秒。实验结果表明,平均检测率为97.55%,平均处理时间为22.33毫秒/帧,表现优于ART方法。

Lane marking detection is fundamental for both advanced driving assistance systems. However, detecting lane is highly challenging when the visibility of a road lane marking is low due to real-life challenging environment and adverse weather. Most of the lane detection methods suffer from four types of challenges: (i) light effects i.e., shadow, glare of light, reflection etc.; (ii) Obscured visibility of eroded, blurred, colored and cracked lane caused by natural disasters and adverse weather; (iii) lane marking occlusion by different objects from surroundings (wiper, vehicles etc.); and (iv) presence of confusing lane like lines inside the lane view e.g., guardrails, pavement marking, road divider etc. Here, we propose a robust lane detection and tracking method with three key technologies. First, we introduce a comprehensive intensity threshold range (CITR) to improve the performance of the canny operator in detecting low intensity lane edges. Second, we propose a two-step lane verification technique, the angle based geometric constraint (AGC) and length-based geometric constraint (LGC) followed by Hough Transform, to verify the characteristics of lane marking and to prevent incorrect lane detection. Finally, we propose a novel lane tracking technique, by defining a range of horizontal lane position (RHLP) along the x axis which will be updating with respect to the lane position of previous frame. It can keep track of the lane position when either left or right or both lane markings are partially and fully invisible. To evaluate the performance of the proposed method we used the DSDLDE [1] and SLD [2] dataset with 1080x1920 and 480x720 resolutions at 24 and 25 frames/sec respectively. Experimental results show that the average detection rate is 97.55%, and the average processing time is 22.33 msec/frame, which outperform the state of-the-art method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源