论文标题
用批次测量巨大的射电星系长度分布
Measuring the giant radio galaxy length distribution with the LoTSS
论文作者
论文摘要
宽星系是由超级黑洞喷射产生的发光结构,由原子核,相对论电子和磁场组成。在特殊情况下,射电星系达到了宇宙学,大型摩加帕斯克的范围,从而变成了巨人。巨人体现了星系可以影响周围宇宙网络的最极端的机制。巨大增长的触发因素仍然是一个谜。令人兴奋的是,新的敏感低频天空调查有望改变这种情况。在这项工作中,我们对巨型生长的中心动力学数量的分布进行精确测量:总长度。我们首先为既严格又实用的射电星系构建一个统计几何框架。然后,我们搜索Lofar两米的Sky Sumperion进行巨人,发现了2060年以前未知的样品:在所有上一篇文献中发现的多数。壮观的发现包括由椭圆星系托管的最长的巨人,最长的巨人由螺旋星系托管,还有13个巨人,其角度比满月大的巨人。通过结合理论和观察 - 以及仔细转发建模选择效果 - 我们推断出巨大的射电星系长度通过带有尾部索引$ -3.5 \ pm 0.5 $的帕累托分布得到很好的描述。这一发现是对射电星系增长的模型和模拟的新观察约束。 In addition, for the first time, we determine the comoving number density of giants, $5 \pm 2\ (100\ \mathrm{Mpc})^{-3}$, and the volume-filling fraction of giant radio galaxy lobes in clusters and filaments, $5\substack{+8\\-2}\cdot 10^{-6}$.我们得出的结论是,巨人确实是罕见的 - 不仅从观察的角度来看,而且从宇宙学的角度来看。在任何时候,大多数簇和细丝 - 现代宇宙网的基础 - 都不藏有巨人。
Radio galaxies are luminous structures created by the jets of supermassive black holes, and consist of atomic nuclei, relativistic electrons, and magnetic fields. In exceptional cases, radio galaxies attain cosmological, megaparsec extents - and thus turn into giants. Giants embody the most extreme known mechanism through which galaxies can impact the Cosmic Web around them. The triggers of giant growth remain a mystery. Excitingly, new sensitive low-frequency sky surveys hold promise to change this situation. In this work, we perform a precision measurement of the distribution of giant growth's central dynamical quantity: total length. We first construct a statistical geometric framework for radio galaxies that is both rigorous and practical. We then search the LOFAR Two-metre Sky Survey for giants, discovering 2060 previously unknown specimina: more than have been found in all preceding literature combined. Spectacular discoveries include the longest giant hosted by an elliptical galaxy, the longest giant hosted by a spiral galaxy, and 13 giants with an angular length larger than that of the full Moon. By combining theory and observations - and carefully forward modelling selection effects - we infer that giant radio galaxy lengths are well described by a Pareto distribution with tail index $-3.5 \pm 0.5$. This finding is a new observational constraint for models and simulations of radio galaxy growth. In addition, for the first time, we determine the comoving number density of giants, $5 \pm 2\ (100\ \mathrm{Mpc})^{-3}$, and the volume-filling fraction of giant radio galaxy lobes in clusters and filaments, $5\substack{+8\\-2}\cdot 10^{-6}$. We conclude that giants are truly rare - not only from an observational perspective, but also from a cosmological one. At any moment in time, most clusters and filaments - the building blocks of the modern Cosmic Web - do not harbour giants.