论文标题
使用保形预测在动态环境中的安全计划
Safe Planning in Dynamic Environments using Conformal Prediction
论文作者
论文摘要
我们提出了一个在未知的动态环境中规划具有概率安全性的框架,可以使用保形预测保证。特别是,我们设计了使用i)动态环境的轨迹预测的模型预测控制器(MPC),ii)预测区域量化了预测的不确定性。为了获得预测区域,我们使用保形预测,这是一种不确定性量化的统计工具,需要离线轨迹数据的可用性 - 在许多应用程序(例如自主驾驶)中的合理假设。预测区域是有效的,即它们具有用户定义的概率,因此MPC被证明是安全的。我们说明了在充满行人的十字路口的自动驾驶汽车模拟器Carla的结果。我们方法的强度是与最先进的轨迹预测因子(例如RNN和LSTMS)的兼容性,同时却没有对基本轨迹生成分布的假设。据我们所知,这些是在这种环境中提供有效安全保证的第一个结果。
We propose a framework for planning in unknown dynamic environments with probabilistic safety guarantees using conformal prediction. Particularly, we design a model predictive controller (MPC) that uses i) trajectory predictions of the dynamic environment, and ii) prediction regions quantifying the uncertainty of the predictions. To obtain prediction regions, we use conformal prediction, a statistical tool for uncertainty quantification, that requires availability of offline trajectory data - a reasonable assumption in many applications such as autonomous driving. The prediction regions are valid, i.e., they hold with a user-defined probability, so that the MPC is provably safe. We illustrate the results in the self-driving car simulator CARLA at a pedestrian-filled intersection. The strength of our approach is compatibility with state of the art trajectory predictors, e.g., RNNs and LSTMs, while making no assumptions on the underlying trajectory-generating distribution. To the best of our knowledge, these are the first results that provide valid safety guarantees in such a setting.