论文标题
同源性恢复,平稳的一致性和图八节
Homology cobordism, smooth concordance, and the figure eight knot
论文作者
论文摘要
$ 0 $ - 两个节的效果$ k_1 $和$ k_2 $是同源性子午线,如果存在$ \ mathbb {z} $ - 同源性cobordism $ x $之间的两个knot子午线,以至于两个knot meridians在$ h_ {1}中的同一个同源性类别(x}}(x}(x,x,z,z,z})$。在本文中,我们给出了一对合理的切合结,它们不是平稳的一致性,但其$ 0 $ surgeries是同源性的Rel Meridians。这对中的一个结是图形八节,它的一致性顺序二。以前所有此类结的例子都是无限顺序。
The $0$-surgeries of two knots $K_1$ and $K_2$ are homology cobordant rel meridians if there exists a $\mathbb{Z}$-homology cobordism $X$ between them such that the two knot meridians are in the same homology class in $H_{1}(X,\mathbb{Z})$. In this paper, we give a pair of rationally slice knots which are not smoothly concordant but whose $0$-surgeries are homology cobordant rel meridians. One knot in the pair is the figure eight knot, which has concordance order two; all previous examples of such pairs of knots are infinite order.