论文标题
部分可观测时空混沌系统的无模型预测
Anomaly Detection Requires Better Representations
论文作者
论文摘要
异常检测旨在确定异常现象,这是科学和工业中的核心任务。该任务本质上是无监督的,因为异常是出乎意料且在训练过程中未知。自我监督的表示学习的最新进展直接导致了异常检测的改进。在该立场论文中,我们首先解释了如何轻松使用自我监督的表示形式来实现普遍报道的异常检测基准中的最新性能。然后,我们认为解决下一代异常检测任务需要在表示学习方面进行新的技术和概念改进。
Anomaly detection seeks to identify unusual phenomena, a central task in science and industry. The task is inherently unsupervised as anomalies are unexpected and unknown during training. Recent advances in self-supervised representation learning have directly driven improvements in anomaly detection. In this position paper, we first explain how self-supervised representations can be easily used to achieve state-of-the-art performance in commonly reported anomaly detection benchmarks. We then argue that tackling the next generation of anomaly detection tasks requires new technical and conceptual improvements in representation learning.