论文标题

塞贝克系数探测的超导镍的电子带结构在无序极限下

Electronic band structure of a superconducting nickelate probed by the Seebeck coefficient in the disordered limit

论文作者

Grissonnanche, G., Pan, G. A., LaBollita, H., Segedin, D. Ferenc, Song, Q., Paik, H., Brooks, C. M., Beauchesne-Blanchet, E., González, J. L. Santana, Botana, A. S., Mundy, J. A., Ramshaw, B. J.

论文摘要

超导镍是一个新的家族,这是一个密切相关的电子材料,具有相似于超导酸奶油的相图。虽然类比与铜层是自然的,但对镍的金属状态知之甚少,这使得这些比较变得困难。我们通过测量Seebeck系数($ s $)来探测薄膜超导的5层($ n = 5 $)和金属3层($ n = 3 $)镍的电子分散。我们发现$ n = 5 $和$ n = 3 $镍的温度独立和负$ s/t $。这些结果与在类似的电子填充中测量的强度依赖温度的$ s/t $形成鲜明对比,$ _ {1.36} $ nd $ _ {0.4} $ _ {0.24} $ _ {0.24} $ cuo $ _4 $。根据密度功能理论计算出的电子结构可以使用Boltzmann传输理论重现镍盐中$ s/t $的温度依赖性,符号和振幅。这表明,从第一原理计算获得的电子结构提供了对超导镍盐的费米学的可靠描述,并建议尽管迹象表明具有较强的电子相关性,但金属状态下仍有明确定义的准粒子。最后,我们解释了镍和铜酸盐之间的Seebeck系数的差异,因为它们在杂质浓度下以强烈的差异性。我们的研究表明,Seebeck系数的高弹性散射极限仅反映了金属的基本带结构,类似于HALL系数的高磁场极限。这为Seebeck测量值开辟了新的途径,以探测相对无序量子材料的电子带结构。

Superconducting nickelates are a new family of strongly correlated electron materials with a phase diagram closely resembling that of superconducting cuprates. While analogy with the cuprates is natural, very little is known about the metallic state of the nickelates, making these comparisons difficult. We probe the electronic dispersion of thin-film superconducting 5-layer ($n=5$) and metallic 3-layer ($n=3$) nickelates by measuring the Seebeck coefficient, $S$. We find a temperature-independent and negative $S/T$ for both $n=5$ and $n=3$ nickelates. These results are in stark contrast to the strongly temperature-dependent $S/T$ measured at similar electron filling in the cuprate La$_{1.36}$Nd$_{0.4}$Sr$_{0.24}$CuO$_4$. The electronic structure calculated from density functional theory can reproduce the temperature dependence, sign, and amplitude of $S/T$ in the nickelates using Boltzmann transport theory. This demonstrates that the electronic structure obtained from first-principles calculations provides a reliable description of the Fermiology of superconducting nickelates, and suggests that, despite indications of strong electronic correlations, there are well-defined quasiparticles in the metallic state. Finally, we explain the differences in the Seebeck coefficient between nickelates and cuprates as originating in strong dissimilarities in impurity concentrations. Our study demonstrates that the high elastic scattering limit of the Seebeck coefficient reflects only the underlying band structure of a metal, analogous to the high magnetic field limit of the Hall coefficient. This opens a new avenue for Seebeck measurements to probe the electronic band structures of relatively disordered quantum materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源