论文标题
短时量子动力学的经典模拟
Classical simulation of short-time quantum dynamics
论文作者
论文摘要
量子技术开发的最新进展使得能够直接研究日益复杂的量子多体系统的动力学。这激发了研究此问题的经典算法的复杂性,以便基准测试量子模拟器并描述量子优势的制度。在这里,我们提出了近似局部可观察到的动力学和非物质量的动力学的经典算法,例如Loschmidt Echo,该算法由局部哈密顿量的进化控制。在短时间内,它们的计算成本量表以系统大小和近似误差的倒数为单位。在局部可观察情况的情况下,所提出的算法比基于Lieb-Robinson结合的算法更好地依赖近似误差。我们的结果使用群集扩展技术适应了动态设置,为此我们提供了它们的收敛性证明。除了我们的有效算法外,这还具有重要的物理后果。特别是,我们建立了一种新型的量子速度极限,一个绑定在动力学相变的限制,并且在短时间内进化的产品状态结合的浓度。
Recent progress in the development of quantum technologies has enabled the direct investigation of dynamics of increasingly complex quantum many-body systems. This motivates the study of the complexity of classical algorithms for this problem in order to benchmark quantum simulators and to delineate the regime of quantum advantage. Here we present classical algorithms for approximating the dynamics of local observables and nonlocal quantities such as the Loschmidt echo, where the evolution is governed by a local Hamiltonian. For short times, their computational cost scales polynomially with the system size and the inverse of the approximation error. In the case of local observables, the proposed algorithm has a better dependence on the approximation error than algorithms based on the Lieb-Robinson bound. Our results use cluster expansion techniques adapted to the dynamical setting, for which we give a novel proof of their convergence. This has important physical consequences besides our efficient algorithms. In particular, we establish a novel quantum speed limit, a bound on dynamical phase transitions, and a concentration bound for product states evolved for short times.