论文标题
安全意识的时间 - 最佳运动计划与不确定的人类国家估计
Safety-aware time-optimal motion planning with uncertain human state estimation
论文作者
论文摘要
人类在机器人运动计划中的意识对于与人类的无缝互动至关重要。许多现有技术在本地放慢,停止或改变机器人的轨迹,以避免与人类发生碰撞。尽管在路径计划阶段使用有关人类状态的信息可以减少对未来对人类运动的干扰,并使安全停止的频率降低,但这种方法的广泛性较小。本文提出了一种新颖的方法,将人类模型嵌入机器人的路径计划者中。该方法明确解决了最小化路径执行时间的问题,包括放缓和归功于人类接近性的停止。为此,它将安全速度限制转换为驱动路径优化的配置空间成本功能。可以根据人类观察到的状态或预测状态对成本映像进行更新。该方法可以处理人类状态的确定性和概率表示,并且独立于预测算法。工业协作单元的数值和实验结果表明,所提出的方法始终减少机器人的执行时间,并避免不必要的安全速度降低。
Human awareness in robot motion planning is crucial for seamless interaction with humans. Many existing techniques slow down, stop, or change the robot's trajectory locally to avoid collisions with humans. Although using the information on the human's state in the path planning phase could reduce future interference with the human's movements and make safety stops less frequent, such an approach is less widespread. This paper proposes a novel approach to embedding a human model in the robot's path planner. The method explicitly addresses the problem of minimizing the path execution time, including slowdowns and stops owed to the proximity of humans. For this purpose, it converts safety speed limits into configuration-space cost functions that drive the path's optimization. The costmap can be updated based on the observed or predicted state of the human. The method can handle deterministic and probabilistic representations of the human state and is independent of the prediction algorithm. Numerical and experimental results on an industrial collaborative cell demonstrate that the proposed approach consistently reduces the robot's execution time and avoids unnecessary safety speed reductions.