论文标题
部分可观测时空混沌系统的无模型预测
Bridging the Gap Between Target Networks and Functional Regularization
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Bootstrapping is behind much of the successes of Deep Reinforcement Learning. However, learning the value function via bootstrapping often leads to unstable training due to fast-changing target values. Target Networks are employed to stabilize training by using an additional set of lagging parameters to estimate the target values. Despite the popularity of Target Networks, their effect on the optimization is still misunderstood. In this work, we show that they act as an implicit regularizer. This regularizer has disadvantages such as being inflexible and non convex. To overcome these issues, we propose an explicit Functional Regularization that is a convex regularizer in function space and can easily be tuned. We analyze the convergence of our method theoretically and empirically demonstrate that replacing Target Networks with the more theoretically grounded Functional Regularization approach leads to better sample efficiency and performance improvements.