论文标题
建模冷冻机传导设备的冷却
Modeling the cooldown of cryocooler conduction-cooled devices
论文作者
论文摘要
由于可用的冷却能力较低的比较,冷却器传导冷却设备与对流冷却设备相比,可以经历大量的冷却时间。因此,冷却时间是传导冷却设备的重要设计参数。本文介绍了Python开发的一个框架,该框架用于计算冷冻机传导冷却设备的冷却时间和冷却时间,例如超导磁铁和加速器腔。冷却时间估计问题本质上是一个普通一阶微分方程的系统,该方程包括构成材料特性(依赖温度的导热性和特定的热容量)的组件,这些组件与主要的传热通道(跨压接触点)和冷冻机能力交织在一起。首先提出该ODE系统的公式。然后,使用内置的Python库oldoint求解此ODE系统。一个案例研究包括一个小型冷冻机传导冷却冷却铜稳定的niobium-titanium磁铁。案例研究补充了Python脚本,使读者可以简单地调整设备设计参数并从缓慢/快速冷却的角度优化设计。
Cryocooler conduction cooled devices can experience significant cooldown time due to lower available cooling capacity compares to convection cooled devices. Therefore, the cooldown time is an important design parameter for conduction cooled devices. This article introduces a framework developed in Python for calculating the cooldown profiles and cooldown time of cryocooler conduction-cooled devices such as superconducting magnets and accelerator cavities. The cooldown time estimation problem is essentially a system of ordinary first-order differential equations comprising the material properties (temperature dependent thermal conductivity and specific heat capacity) of the components intertwined with the prevailing heat transfer channels (conduction, radiation, and heat flow across pressed contacts) and the cryocooler capacity. The formulation of this ODE system is first presented. This ODE system is then solved using the in-built Python library odeint. A case study is presented comprising a small cryocooler conduction-cooled copper stabilized niobium-titanium magnet. The case study is supplemented with the Python script enabling the reader to simply tweak the device design parameters and optimize the design from the point of view of slow/fast cooldown.