论文标题
理想高级频带的分解中的确切多体基础状态:应用于手性扭曲的石墨烯多层的应用
Exact Many-Body Ground States from Decomposition of Ideal Higher Chern Bands: Applications to Chirally Twisted Graphene Multilayers
论文作者
论文摘要
由扭曲石墨烯多层的更高的Chern带的动机,我们认为具有任意Chern Number $ c $的平面带,带有理想的量子几何形状。尽管$ c> 1 $频段与Landau级别不同,但我们表明这些频段具有精确的分数Chern绝缘子(FCI)基态,用于短距离相互作用。我们展示了如何将理想的更高的Chern乐队分解为单独的理想频段,而Chern Number $ 1 $通过翻译和旋转对称性交织在一起。分解的乐队承认了一个$ SU(C)$ ACTION,结合了真实的空间和动量空间翻译。值得注意的是,它们还允许分析确切的多体基接地状态,例如广义量子霍尔铁磁铁和FCI,包括在短距离相互作用的极限的情况下,包括风味 - 单词Halperin状态和Laughlin Ferromagnets。在此限制下,$ SU(C)$ ACTION被提升为基态子空间的对称性。虽然风味单线状态是对称的,但风味的铁磁体对应于翻译状态,并接纳了与空间变化的密度波模式相对应的带电的Skyrmion激发。我们通过对石墨烯扭曲手性多层的理想带的理想带的数值模拟来确认我们的分析预测,并讨论了相对于伯纳尔双层的实验可访问系统(例如单层石墨烯)的后果。
Motivated by the higher Chern bands of twisted graphene multilayers, we consider flat bands with arbitrary Chern number $C$ with ideal quantum geometry. While $C>1$ bands differ from Landau levels, we show that these bands host exact fractional Chern insulator (FCI) ground states for short range interactions. We show how to decompose ideal higher Chern bands into separate ideal bands with Chern number $1$ that are intertwined through translation and rotation symmetry. The decomposed bands admit an $SU(C)$ action that combines real space and momentum space translations. Remarkably, they also allow for analytic construction of exact many-body ground states, such as generalized quantum Hall ferromagnets and FCIs, including flavor-singlet Halperin states and Laughlin ferromagnets in the limit of short-range interactions. In this limit, the $SU(C)$ action is promoted to a symmetry on the ground state subspace. While flavor singlet states are translation symmetric, the flavor ferromagnets correspond to translation broken states and admit charged skyrmion excitations corresponding to a spatially varying density wave pattern. We confirm our analytic predictions with numerical simulations of ideal bands of twisted chiral multilayers of graphene, and discuss consequences for experimentally accessible systems such as monolayer graphene twisted relative to a Bernal bilayer.