论文标题

对摊销逆问题的优化

Optimization for Amortized Inverse Problems

论文作者

Liu, Tianci, Yang, Tong, Zhang, Quan, Lei, Qi

论文摘要

将深层生成模型纳入反问题中的先验分布已在重建损坏的观察结果的图像方面取得了巨大成功。尽管如此,现有的优化方法在很大程度上使用梯度下降而不适应问题的非凸性性质,并且可以对初始值敏感,从而阻碍进一步的性能提高。在本文中,我们提出了一种有效的摊销优化方案,该方案针对具有深层生成性先验的反问题。具体而言,将难度高的优化任务分解为优化一系列更容易的序列。我们提供了所提出的算法的理论保证,并在不同的反问题上对其进行了验证。结果,我们的方法以较大的边距质量和定量的基线方法优于基线方法。

Incorporating a deep generative model as the prior distribution in inverse problems has established substantial success in reconstructing images from corrupted observations. Notwithstanding, the existing optimization approaches use gradient descent largely without adapting to the non-convex nature of the problem and can be sensitive to initial values, impeding further performance improvement. In this paper, we propose an efficient amortized optimization scheme for inverse problems with a deep generative prior. Specifically, the optimization task with high degrees of difficulty is decomposed into optimizing a sequence of much easier ones. We provide a theoretical guarantee of the proposed algorithm and empirically validate it on different inverse problems. As a result, our approach outperforms baseline methods qualitatively and quantitatively by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源