论文标题

GR的完全集成的内部解决方案,用于固定旋转圆柱形完美流体

Fully integrated interior solutions of GR for stationary rigidly rotating cylindrical perfect fluids

论文作者

Célérier, Marie-Noëlle

论文摘要

在70年代发表的一系列重要文章中,Krasiński展示了由固定的等体旋转圆柱提出的Einstein场方程的一类内部解决方案。但是,这些解决方案取决于未指定的任意功能,这使作者声称无法直接从现场方程中获得流体状态的方程,但必须手动添加。在本文中,我们使用了我们在2021年开发的双重ANSATZ,并将其详细实现为一系列最近的论文,这些论文显示了具有各向异性压力的固定旋转圆柱体对称流体的精确内部解决方案。这种ANSATZ使我们能够在这里获得爱因斯坦方程的完全集成的解决方案,并使用非常简单的分析函数编写,并证明流体状态的方程是从这些场方程中自然遵循的。

In an important series of articles published during the 70's, Krasiński displayed a class of interior solutions of the Einstein field equations sourced by a stationary isentropic rotating cylinder of perfect fluid. However, these solutions depend on an unspecified arbitrary function, which lead the author to claim that the equation of state of the fluid could not be obtained directly from the field equations but had to be added by hand. In the present article, we use a double ansatz which we have developed in 2021 and implemented at length into a series of recent papers displaying exact interior solutions for a stationary rotating cylindrically symmetric fluid with anisotropic pressure. This ansatz allows us to obtain here a fully integrated class of solutions to the Einstein equations, written with the use of very simple analytical functions, and to show that the equation of state of the fluid follows naturally from these field equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源