论文标题

用于基于chiplet的加速器的多-DNN工作负载的多目标硬件映射合并

Multi-Objective Hardware-Mapping Co-Optimisation for Multi-DNN Workloads on Chiplet-based Accelerators

论文作者

Das, Abhijit, Russo, Enrico, Palesi, Maurizio

论文摘要

需要在同一计算平台上有效地执行不同的深神经网络(DNN),再加上对易于可伸缩性的要求,使多芯片模块(MCM)基于基于的加速器成为首选的设计选择。这样的加速器将以chiplet的形式汇集在一起​​,通过网络包装(NOP)互连。本文解决了选择最合适的子加速器,配置它们,确定其最佳位置的挑战,并在空间和时间上绘制一组预定的DNN集的层。目的是最大程度地减少并行执行过程中的执行时间和能源消耗,同时还最大程度地减少了加速器的总成本,特别是硅区域。 本文介绍了Moham,这是一个用于基于芯片的加速器的多-DNN工作负载的多目标硬件映射合作的框架。 Moham利用了一种多物体进化算法,该算法通过合并了几个定制的遗传运营商,该算法专门针对给定问题。 Moham在不同的多DNN工作负载方案上对最新的设计空间探索(DSE)框架进行了评估。与最先进的方法相比,穆罕默发现的解决方案是帕累托最佳的。具体而言,Moham生成的加速器设计可以将潜伏期降低到$ 96 \%$和能源最高$ 96.12 \%$。

The need to efficiently execute different Deep Neural Networks (DNNs) on the same computing platform, coupled with the requirement for easy scalability, makes Multi-Chip Module (MCM)-based accelerators a preferred design choice. Such an accelerator brings together heterogeneous sub-accelerators in the form of chiplets, interconnected by a Network-on-Package (NoP). This paper addresses the challenge of selecting the most suitable sub-accelerators, configuring them, determining their optimal placement in the NoP, and mapping the layers of a predetermined set of DNNs spatially and temporally. The objective is to minimise execution time and energy consumption during parallel execution while also minimising the overall cost, specifically the silicon area, of the accelerator. This paper presents MOHaM, a framework for multi-objective hardware-mapping co-optimisation for multi-DNN workloads on chiplet-based accelerators. MOHaM exploits a multi-objective evolutionary algorithm that has been specialised for the given problem by incorporating several customised genetic operators. MOHaM is evaluated against state-of-the-art Design Space Exploration (DSE) frameworks on different multi-DNN workload scenarios. The solutions discovered by MOHaM are Pareto optimal compared to those by the state-of-the-art. Specifically, MOHaM-generated accelerator designs can reduce latency by up to $96\%$ and energy by up to $96.12\%$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源