论文标题

高维无订单多元空间疾病映射

High-dimensional order-free multivariate spatial disease mapping

论文作者

Vicente, G., Adin, A., Goicoa, T., Ugarte, M. D.

论文摘要

尽管近年来对疾病制图的研究进行了大量研究,但由于实施和计算负担的困难,多元模型用于领域的空间数据仍然有限。当小区域的数量很大时,这些问题会加剧。在本文中,我们引入了一种无订单的多元可扩展贝叶斯建模方法,以同时同时死亡(或发病率)。该提案将空间域分配到较小的子区域中,适合每个细分中的多元模型,并在整个空间域中获得相对风险的后验分布。该方法还提供了每个分区中疾病的空间模式之间的后验相关性,这些模式通过共识的蒙特卡洛算法合并,以获得整个研究区域的相关性。我们使用R包BIGDM中的集成嵌套拉普拉斯近似(INLA)实施了该建议,并使用它共同分析西班牙市政当局中的结直肠,肺和胃癌死亡率数据。新建议允许对大数据集进行分析,并提供比拟合单个多元模型的更好结果。

Despite the amount of research on disease mapping in recent years, the use of multivariate models for areal spatial data remains limited due to difficulties in implementation and computational burden. These problems are exacerbated when the number of small areas is very large. In this paper, we introduce an order-free multivariate scalable Bayesian modelling approach to smooth mortality (or incidence) risks of several diseases simultaneously. The proposal partitions the spatial domain into smaller subregions, fits multivariate models in each subdivision and obtains the posterior distribution of the relative risks across the entire spatial domain. The approach also provides posterior correlations among the spatial patterns of the diseases in each partition that are combined through a consensus Monte Carlo algorithm to obtain correlations for the whole study region. We implement the proposal using integrated nested Laplace approximations (INLA) in the R package bigDM and use it to jointly analyse colorectal, lung, and stomach cancer mortality data in Spanish municipalities. The new proposal permits the analysis of big data sets and provides better results than fitting a single multivariate model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源