论文标题
$ \ mathbb {f} _ {2^n} $上的几类0-apn power函数
Several classes of 0-APN power functions over $\mathbb{F}_{2^n}$
论文作者
论文摘要
最近,对部分APN功能的调查引起了很多关注。在本文中,借助结果消除和岩浆,我们在$ \ mathbb {f} _ {2^{n}} $上提出了几个新的无限类功能。根据[4]的主要结果,这些$ 0 $ -APN功率功能与已知的功能是CCZ授权的。此外,这些无限类的0-APN功率功能可以用$ 1 \ leq n \ leq11 $来解释某些指数,这些指数尚未在Budaghyan等人的表中``解释''[3]。
Recently, the investigation of Partially APN functions has attracted a lot of attention. In this paper, with the help of resultant elimination and MAGMA, we propose several new infinite classes of 0-APN power functions over $\mathbb{F}_{2^{n}}$. By the main result in [4], these $0$-APN power functions are CCZ-inequivalent to the known ones. Moreover, these infinite classes of 0-APN power functions can explain some exponents for $1\leq n\leq11$ which are not yet ``explained" in the tables of Budaghyan et al. [3].