论文标题
跨域3D形状检索的3D形状知识图
3D Shape Knowledge Graph for Cross-domain 3D Shape Retrieval
论文作者
论文摘要
3D建模的激增导致了对3D形状检索领域的明显研究重点。已经提出了许多当代方法来应对这一复杂的挑战。然而,由于固有的基于模态的差异,有效地解决跨模式3D形状检索的复杂性仍然是一项艰巨的任务。这项研究提出了一种创新的概念,称为“几何词”,该概念是通过组合代表实体的元素成分。为了建立知识图,我们将几何词用作节点,通过形状类别和几何属性连接它们。随后,我们设计了一种独特的图形嵌入方法来获取知识。最后,为检索目的引入了有效的相似性度量。重要的是,每个3D或2D实体都可以在知识图内锚定其几何项,从而作为跨域数据之间的链接。结果,我们的方法促进了多个跨域3D形状检索任务。我们在ModelNet40和ShapenetCore55数据集上评估了所提出的方法的性能,其中包括与3D形状检索和跨域检索有关的方案。此外,我们采用既定的跨模式数据集(MI3DOR)来评估跨模式3D形状检索。由此产生的实验结果,结合与最新技术的比较,显然突出了我们方法的优越性。
The surge in 3D modeling has led to a pronounced research emphasis on the field of 3D shape retrieval. Numerous contemporary approaches have been put forth to tackle this intricate challenge. Nevertheless, effectively addressing the intricacies of cross-modal 3D shape retrieval remains a formidable undertaking, owing to inherent modality-based disparities. This study presents an innovative notion, termed "geometric words", which functions as elemental constituents for representing entities through combinations. To establish the knowledge graph, we employ geometric words as nodes, connecting them via shape categories and geometry attributes. Subsequently, we devise a unique graph embedding method for knowledge acquisition. Finally, an effective similarity measure is introduced for retrieval purposes. Importantly, each 3D or 2D entity can anchor its geometric terms within the knowledge graph, thereby serving as a link between cross-domain data. As a result, our approach facilitates multiple cross-domain 3D shape retrieval tasks. We evaluate the proposed method's performance on the ModelNet40 and ShapeNetCore55 datasets, encompassing scenarios related to 3D shape retrieval and cross-domain retrieval. Furthermore, we employ the established cross-modal dataset (MI3DOR) to assess cross-modal 3D shape retrieval. The resulting experimental outcomes, in conjunction with comparisons against state-of-the-art techniques, clearly highlight the superiority of our approach.