论文标题

通过自适应测量的量子增强平均值估计

Quantum-enhanced mean value estimation via adaptive measurement

论文作者

Wada, Kaito, Fukuchi, Kazuma, Yamamoto, Naoki

论文摘要

量子增强(即,量子效应的性能都比任何经典方法更高)的平均值估计值是各种量子技术的基本任务;特别是,它是量子计算算法中必不可少的子例程。值得注意的是,量子估计理论识别了这种估计器的最终精度,该估计量被称为量子cramér-rao(qCR)下限或等效地是量子渔民信息的倒数。由于估计精度直接决定了这些量子技术系统的性能,因此高度要求开发一种可实现QCR结合的通用且实际上可实现的估计方法。但是,在不完美的条件下,尚未开发出这种最终的量子估计量。在本文中,我们在去极化噪声环境中提出了一种量子增强的平均值估计方法,该方法渐近地实现了大量Qubits极限的QCR。为了在实用环境中接近QCR绑定,该方法可自适应优化幅度放大和特定的测量,而无需任何国家准备就可以实施。我们为所提出的自适应估计量(例如一致性和渐近正态性)的统计特性提供了严格的分析。此外,还提供了几个数值模拟来证明该方法的有效性,尤其是表明估计值仅需要一定数量的测量值即可几乎饱和QCR结合。

Quantum-enhanced (i.e., higher performance by quantum effects than any classical methods) mean value estimation of observables is a fundamental task in various quantum technologies; in particular, it is an essential subroutine in quantum computing algorithms. Notably, the quantum estimation theory identifies the ultimate precision of such an estimator, which is referred to as the quantum Cramér-Rao (QCR) lower bound or equivalently the inverse of the quantum Fisher information. Because the estimation precision directly determines the performance of those quantum technological systems, it is highly demanded to develop a generic and practically implementable estimation method that achieves the QCR bound. Under imperfect conditions, however, such an ultimate and implementable estimator for quantum mean values has not been developed. In this paper, we propose a quantum-enhanced mean value estimation method in a depolarizing noisy environment that asymptotically achieves the QCR bound in the limit of a large number of qubits. To approach the QCR bound in a practical setting, the method adaptively optimizes the amplitude amplification and a specific measurement that can be implemented without any knowledge of state preparation. We provide a rigorous analysis for the statistical properties of the proposed adaptive estimator such as consistency and asymptotic normality. Furthermore, several numerical simulations are provided to demonstrate the effectiveness of the method, particularly showing that the estimator needs only a modest number of measurements to almost saturate the QCR bound.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源