论文标题
稀疏多参考比对和单粒子冷冻电子显微镜的样品复杂性
The sample complexity of sparse multi-reference alignment and single-particle cryo-electron microscopy
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Multi-reference alignment (MRA) is the problem of recovering a signal from its multiple noisy copies, each acted upon by a random group element. MRA is mainly motivated by single-particle cryo-electron microscopy (cryo-EM) that has recently joined X-ray crystallography as one of the two leading technologies to reconstruct biological molecular structures. Previous papers have shown that in the high noise regime, the sample complexity of MRA and cryo-EM is $n=ω(σ^{2d})$, where $n$ is the number of observations, $σ^2$ is the variance of the noise, and $d$ is the lowest-order moment of the observations that uniquely determines the signal. In particular, it was shown that in many cases, $d=3$ for generic signals, and thus the sample complexity is $n=ω(σ^6)$. In this paper, we analyze the second moment of the MRA and cryo-EM models. First, we show that in both models the second moment determines the signal up to a set of unitary matrices, whose dimension is governed by the decomposition of the space of signals into irreducible representations of the group. Second, we derive sparsity conditions under which a signal can be recovered from the second moment, implying sample complexity of $n=ω(σ^4)$. Notably, we show that the sample complexity of cryo-EM is $n=ω(σ^4)$ if at most one third of the coefficients representing the molecular structure are non-zero; this bound is near-optimal. The analysis is based on tools from representation theory and algebraic geometry. We also derive bounds on recovering a sparse signal from its power spectrum, which is the main computational problem of X-ray crystallography.