论文标题
平行四角和三角形之间的质心Banach-Mazur距离
The centroid Banach-Mazur distance between the parallelogram and the triangle
论文作者
论文摘要
让$ c $和$ d $是欧几里得空间中的凸体。 We define the centroid Banach-Mazur distance $δ_{BM}^{\rm cen} (C, D)$ similarly to the classic Banach-Mazur distance $δ_{BM} (C, D)$, but with the extra requirement that the centroids of $C$ and an affine image of $D$ coincide.我们证明,对于平行四边形$ p $和$ e^2 $中的三角形$ t $,我们有$δ_{bm}^{\ rm cen}(p,p,t)= \ frac {5} {2} {2} $。
Let $C$ and $D$ be convex bodies in the Euclidean space $E^d$. We define the centroid Banach-Mazur distance $δ_{BM}^{\rm cen} (C, D)$ similarly to the classic Banach-Mazur distance $δ_{BM} (C, D)$, but with the extra requirement that the centroids of $C$ and an affine image of $D$ coincide. We prove that for the parallelogram $P$ and the triangle $T$ in $E^2$ we have $δ_{BM}^{\rm cen} (P, T) = \frac{5}{2}$.