论文标题
在拓扑空间上的恒星选择特性的迭代和工会
Iterations and unions of star selection properties on topological spaces
论文作者
论文摘要
在本文中,我们研究了具有一定的(星形)选择原理的小(相对于边界和主导数字)工会所拥有的选择原理。此外,我们研究了这些迭代属性在$ψ$空间上的行为。最后,我们表明,始终存在一个普通的恒星 - 恒星空间,并不是明星居民。
In this paper, we investigate what selection principles properties are possessed by small (with respect to the bounding and dominating numbers) unions of spaces with certain (star) selection principles.. Furthermore, we give several results about iterations of these properties and weaker properties than paracompactness. In addition, we study the behaviour of these iterated properties on $Ψ$-spaces. Finally, we show that, consistently, there is a normal star-Menger space that is not strongly star-Menger.