论文标题
格里菲斯(Griffiths
Characterizations of Griffiths Positivity, Pluriharmonicity and Flatness
论文作者
论文摘要
邓宁·旺·祖(Deng-wang-Zhou)表明,如果满足最佳$ l^2 $延伸条件,那么Hermitian Holomorphic Vector Bundle是Griffith的半积极。作为概括,我们根据某些$ l^2 $延伸条件提出了格里菲斯积极性的定量表征。我们还表明,只有当它满足最佳$ l^p $ - 扩展条件的相等性部分时,$ \ mathbb {r} $可测量的可测量函数才是pluriharmonic。这回答了Inayama的猜想。此外,可能奇异的Hermitian度量的平坦度也等于最佳$ l^p $延伸条件的相等性部分。
Deng-Ning-Wang-Zhou showed that a Hermitian holomorphic vector bundle is Griffiths semi-positive if it satisfies the optimal $L^2$-extension condition. As a generalization, we present a quantitative characterization of Griffiths positivity in terms of certain $L^2$-extension conditions. We also show that a $\mathbb{R}$-valued measurable function is pluriharmonic if and only if it satisfies the equality part of the optimal $L^p$-extension condition. This answers a conjecture of Inayama affirmatively. Moreover, the flatness of a possibly singular Hermitian metric is also equivalent to the equality part of the optimal $L^p$-extension condition.