论文标题
使用新的动态视觉数据表示和短长度卷积计算的量子启发的边缘检测算法实现
Quantum-Inspired Edge Detection Algorithms Implementation using New Dynamic Visual Data Representation and Short-Length Convolution Computation
论文作者
论文摘要
随着图像数据的可用性不断膨胀,对传输,存储和处理能力的需求也是如此。处理大量数据的处理要求迅速超过了传统处理技术的实用性。过渡到对传统方法具有有希望效率的量子处理和算法可以解决其中一些问题。但是,为了使这种转变成为可能,必须克服实施实时量子算法的基本问题,以解决智能分析应用所需的关键过程。例如,考虑需要耗时的采集过程的边缘检测任务,并因使用的设备的复杂性而进一步阻碍了实时应用程序中实现的可行性。卷积是对信号和图像处理应用程序必不可少的操作的另一个示例,其中数学操作由乘数和添加的智能混合物组成,需要大量的计算资源。本文研究了一维信号卷积和梯度的新的基于配对的基于转换的量子表示和计算。定义了一个新的视觉数据表示形式来简化卷积计算,使得可以使卷积和梯度操作并行以提高性能。在多个说明性示例中证明了新的数据表示形式,以进行量子边缘检测,梯度和卷积。此外,在现实世界图像上显示了所提出方法的效率。
As the availability of imagery data continues to swell, so do the demands on transmission, storage and processing power. Processing requirements to handle this plethora of data is quickly outpacing the utility of conventional processing techniques. Transitioning to quantum processing and algorithms that offer promising efficiencies over conventional methods can address some of these issues. However, to make this transformation possible, fundamental issues of implementing real time Quantum algorithms must be overcome for crucial processes needed for intelligent analysis applications. For example, consider edge detection tasks which require time-consuming acquisition processes and are further hindered by the complexity of the devices used thus limiting feasibility for implementation in real-time applications. Convolution is another example of an operation that is essential for signal and image processing applications, where the mathematical operations consist of an intelligent mixture of multiplication and addition that require considerable computational resources. This paper studies a new paired transform-based quantum representation and computation of one-dimensional and 2-D signals convolutions and gradients. A new visual data representation is defined to simplify convolution calculations making it feasible to parallelize convolution and gradient operations for more efficient performance. The new data representation is demonstrated on multiple illustrative examples for quantum edge detection, gradients, and convolution. Furthermore, the efficiency of the proposed approach is shown on real-world images.