论文标题
seg&struct:3D形状解析的部分分割与结构推断之间的相互作用
Seg&Struct: The Interplay Between Part Segmentation and Structure Inference for 3D Shape Parsing
论文作者
论文摘要
我们提出了SEG&Struct,这是一个有监督的学习框架,利用部分分割和结构推理之间的相互作用,并在集成框架中证明其协同作用。在最近的深度学习文献中,已经对两者的部分细分和结构推理进行了广泛的研究,而用于每个任务的监督并未完全利用以协助另一个任务。也就是说,结构推断通常是使用不利用点对点关联的自动编码器进行的。同样,分割主要是在没有结构先验的情况下进行的,从而证明了输出段的合理性。我们介绍如何最好地组合这两个任务,同时充分利用监督来提高性能。我们的框架首先使用现成的算法将原始输入形状分解为零件段,然后在零件层次结构中将其输出映射到节点,从而建立了点对点关联。在此之后,我们预测了结构信息,例如部分边界框和部分关系。最后,通过使用基于结构的零件特征检查零件边界的混淆来纠正分割。我们基于结构的实验结果表明,这两个任务之间的相互作用会导致这两个任务的显着改善:结构推理的27.91%,分割为0.5%。
We propose Seg&Struct, a supervised learning framework leveraging the interplay between part segmentation and structure inference and demonstrating their synergy in an integrated framework. Both part segmentation and structure inference have been extensively studied in the recent deep learning literature, while the supervisions used for each task have not been fully exploited to assist the other task. Namely, structure inference has been typically conducted with an autoencoder that does not leverage the point-to-part associations. Also, segmentation has been mostly performed without structural priors that tell the plausibility of the output segments. We present how these two tasks can be best combined while fully utilizing supervision to improve performance. Our framework first decomposes a raw input shape into part segments using an off-the-shelf algorithm, whose outputs are then mapped to nodes in a part hierarchy, establishing point-to-part associations. Following this, ours predicts the structural information, e.g., part bounding boxes and part relationships. Lastly, the segmentation is rectified by examining the confusion of part boundaries using the structure-based part features. Our experimental results based on the StructureNet and PartNet demonstrate that the interplay between the two tasks results in remarkable improvements in both tasks: 27.91% in structure inference and 0.5% in segmentation.