论文标题

通过表面信号参数化学习神经隐式表示

Learning Neural Implicit Representations with Surface Signal Parameterizations

论文作者

Guan, Yanran, Chubarau, Andrei, Rao, Ruby, Nowrouzezahrai, Derek

论文摘要

神经隐式表面表示最近已成为显式3D对象编码的流行替代方案,例如多边形网格,表格点或体素。尽管重大工作改善了这些表示形式的几何保真度,但对它们的最终外观的关注要少得多。传统的显式对象表示通常将3D形状数据与辅助表面映射的图像数据相结合,例如弥漫性颜色纹理和正常地图中的细微尺度几何细节,通常需要将3D表面映射到平面上,即表面参数化;另一方面,由于缺乏可配置的表面参数化,隐式表示无法轻易纹理。受这种数字内容创作方法论的启发,我们设计了一种神经网络体系结构,该神经网络体系结构隐式编码适合外观数据的基础表面参数化。因此,我们的模型与现有的基于网格的数字内容与外观数据保持一致。由于最近将紧凑网络拟合到各个3D对象的工作的动机,我们提出了一个新的重量编码神经隐含表示形式,该表示扩展了神经隐式表面的能力,以实现各种纹理映射的常见和重要应用。我们的方法的表现优于合理的基线和最先进的替代方案。

Neural implicit surface representations have recently emerged as popular alternative to explicit 3D object encodings, such as polygonal meshes, tabulated points, or voxels. While significant work has improved the geometric fidelity of these representations, much less attention is given to their final appearance. Traditional explicit object representations commonly couple the 3D shape data with auxiliary surface-mapped image data, such as diffuse color textures and fine-scale geometric details in normal maps that typically require a mapping of the 3D surface onto a plane, i.e., a surface parameterization; implicit representations, on the other hand, cannot be easily textured due to lack of configurable surface parameterization. Inspired by this digital content authoring methodology, we design a neural network architecture that implicitly encodes the underlying surface parameterization suitable for appearance data. As such, our model remains compatible with existing mesh-based digital content with appearance data. Motivated by recent work that overfits compact networks to individual 3D objects, we present a new weight-encoded neural implicit representation that extends the capability of neural implicit surfaces to enable various common and important applications of texture mapping. Our method outperforms reasonable baselines and state-of-the-art alternatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源