论文标题
通过可区分模拟的学习工具形态,用于富含接触的操纵任务
Learning Tool Morphology for Contact-Rich Manipulation Tasks with Differentiable Simulation
论文作者
论文摘要
当人类执行富含联系的操作任务时,通常需要定制的工具来简化任务。例如,我们使用各种餐具来处理食物,例如刀子,叉子和汤匙。同样,机器人可能会受益于专用工具,使他们能够更轻松地完成各种任务。我们提出了一个端到端框架,可以通过利用可区分的物理模拟器来自动学习涉及接触式操纵任务的工具形态。先前的工作依赖于手动构造的先验,需要详细规范3D对象模型,掌握姿势和任务描述,以促进搜索或优化过程。我们的方法只需要定义任务绩效的目标,并通过随机化任务的变化来学习强大的形态。我们可以通过将其作为一个持续的学习问题来进行优化。我们演示了在几种情况下设计新工具的方法的有效性,例如绕组绳索,翻转盒子并将豌豆推到模拟中的勺子上。此外,使用真实机器人的实验表明,我们方法发现的工具形状有助于他们在这些情况下取得成功。
When humans perform contact-rich manipulation tasks, customized tools are often necessary to simplify the task. For instance, we use various utensils for handling food, such as knives, forks and spoons. Similarly, robots may benefit from specialized tools that enable them to more easily complete a variety of tasks. We present an end-to-end framework to automatically learn tool morphology for contact-rich manipulation tasks by leveraging differentiable physics simulators. Previous work relied on manually constructed priors requiring detailed specification of a 3D object model, grasp pose and task description to facilitate the search or optimization process. Our approach only requires defining the objective with respect to task performance and enables learning a robust morphology through randomizing variations of the task. We make this optimization tractable by casting it as a continual learning problem. We demonstrate the effectiveness of our method for designing new tools in several scenarios, such as winding ropes, flipping a box and pushing peas onto a scoop in simulation. Additionally, experiments with real robots show that the tool shapes discovered by our method help them succeed in these scenarios.