论文标题

尖锐的亚当斯不平等,在度量空间和应用方面具有精确的生长条件

Sharp Adams inequalities with exact growth conditions on metric measure spaces and applications

论文作者

Morpurgo, Carlo, Qin, Liuyu

论文摘要

对于度量测量空间上的Riesz样电势而得出了具有精确生长条件的ADAM不平等。结果扩展并改善了第二作者最近在$ \ Mathbb r^n $上获得的结果,该结果是Riesz般的卷积运营商。结果,我们将获得新的Sharp Moser-Moser-Trudinger不平等现象,具有$ \ Mathbb r^n $,Heisenberg Group和Hadamard歧管的精确生长条件。在$ \ mathbb r^n $上,这种不平等将用于证明存在一类准线性椭圆方程的径向基态解决方案,从而扩大了由于Masmoudi和Sani而导致的结果。

Adams inequalities with exact growth conditions are derived for Riesz-like potentials on metric measure spaces. The results extend and improve those obtained recently on $\mathbb R^n$ by the second author, for Riesz-like convolution operators. As a consequence, we will obtain new sharp Moser-Trudinger inequalities with exact growth conditions on $\mathbb R^n$, the Heisenberg group, and Hadamard manifolds. On $\mathbb R^n$ such inequalities will be used to prove the existence of radial ground states solutions for a class of quasilinear elliptic equations, extending results due to Masmoudi and Sani.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源