论文标题
身心:解码行人的动态以及通过耦合机械和决策过程的智能手机分心的影响
Body and mind: Decoding the dynamics of pedestrians and the effect of smartphone distraction by coupling mechanical and decisional processes
论文作者
论文摘要
行人能够预料到,这使他们在避免碰撞并在杂乱无章的空间中导航方面具有优势。但是,通过智能手机的数字干扰,这些功能受到了损害,这是一个日益增长的安全问题。为了捕获这些功能,我们提出了一个基于代理的模型(称为ANDA),呈现决策过程的透明描述,其中选择了所需的速度作为最佳的感知成本,以及处理接触和碰撞的机械层。总体而言,该模型包含少于十几个参数,其中许多参数使用独立的实验数据拟合。数值模拟证明了ANDA的多功能性,这些模拟在非常广泛的场景中成功复制经验观察。这些场景因涉及一个,两个或更多代理的避免碰撞而到单向和双向设置中的集体流量性能以及通过瓶颈疏散动力学的集体流动性能,在那里可以直接访问接触力。值得注意的是,该模型能够通过减少决策更新的频率,复制数字干扰效果,从而在“智能手机步行”的行人中复制实验观察到的流动的增强性。该模型的概念透明度使您可以轻松地确定其当前局限性的起源,并在主动物体系统中阐明行人人群的奇异位置。
Pedestrians are able to anticipate, which gives them an edge in avoiding collisions and navigating in cluttered spaces. However, these capabilities are impaired by digital distraction through smartphones, a growing safety concern. To capture these features, we put forward a continuous agent-based model (dubbed ANDA) hinging on a transparent delineation of a decision-making process, wherein a desired velocity is selected as the optimum of a perceived cost, and a mechanical layer that handles contacts and collisions. Altogether, the model includes less than a dozen parameters, many of which are fit using independent experimental data. The versatility of ANDA is demonstrated by numerical simulations that successfully replicate empirical observations in a very wide range of scenarios. These scenarios vary from collision avoidance involving one, two, or more agents, to collective flow properties in unidirectional and bidirectional settings, and to the dynamics of evacuation through a bottleneck, where contact forces are directly accessible. Remarkably, the model is able to replicate the enhanced chaoticity of the flow observed experimentally in 'smartphone-walking' pedestrians, by reducing the frequency of decisional updates, replicating the digital distraction effect. The conceptual transparency of the model makes it easy to pinpoint the origin of its current limitations and to clarify the singular position of pedestrian crowds amid active-matter systems.