论文标题

对多模式变压器的自适应对比度学习,以进行审查有用预测

Adaptive Contrastive Learning on Multimodal Transformer for Review Helpfulness Predictions

论文作者

Nguyen, Thong, Wu, Xiaobao, Luu, Anh-Tuan, Nguyen, Cong-Duy, Hai, Zhen, Bing, Lidong

论文摘要

现代评论的帮助预测系统取决于多种方式,通常是文本和图像。不幸的是,这些当代方法对波兰跨模式关系的表示很少关注,并且倾向于遭受较低的优化。在许多情况下,这可能会损害模型的预测。为了克服上述问题,我们提出了多模式对比度学习的多模式审查有助于预测(MRHP)问题,并集中在输入方式之间的相互信息,以明确详细阐述跨模式关系。此外,我们为对比度学习方法引入了自适应加权方案,以提高优化的灵活性。最后,我们提出了多模式相互作用模块,以解决多模式数据的不对准性质,从而有助于该模型产生更合理的多模式表示。实验结果表明,我们的方法优于先前的基准,并在两个公开可用的基准数据集上用于MRHP问题的最先进的结果。

Modern Review Helpfulness Prediction systems are dependent upon multiple modalities, typically texts and images. Unfortunately, those contemporary approaches pay scarce attention to polish representations of cross-modal relations and tend to suffer from inferior optimization. This might cause harm to model's predictions in numerous cases. To overcome the aforementioned issues, we propose Multimodal Contrastive Learning for Multimodal Review Helpfulness Prediction (MRHP) problem, concentrating on mutual information between input modalities to explicitly elaborate cross-modal relations. In addition, we introduce Adaptive Weighting scheme for our contrastive learning approach in order to increase flexibility in optimization. Lastly, we propose Multimodal Interaction module to address the unalignment nature of multimodal data, thereby assisting the model in producing more reasonable multimodal representations. Experimental results show that our method outperforms prior baselines and achieves state-of-the-art results on two publicly available benchmark datasets for MRHP problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源