论文标题

具有非零背景的NLS方程:两个过渡区域的Painlevé渐近学

The defocusing NLS equation with nonzero background: Painlevé asymptotics in two transition regions

论文作者

Wang, Zhaoyu, Fan, Engui

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In this paper, we address the Painlevé aymptotics in the transition region $|ξ|:=\big|\frac{x}{2t}\big| \approx 1$ to the Cauchy problem of the defocusing Schr$\ddot{\text{o}}$dinger equation with a nonzero background.With the $\bar\partial$-generation of the nonlinear steepest descent approach and double scaling limit to compute the long-time asymptotics of the solution in two transition regions defined as $$ \mathcal{P}_{\pm 1}(x,t):=\{ (x,t) \in \mathbb{R}\times\mathbb{R}^+, \ \ 0<|ξ-(\pm 1)|t^{2/3}\leq C\}, $$ we find that the long-time asymptotics in both transition regions $ \mathcal{P}_{\pm 1}(x,t)$ can be expressed in terms of the Painlevé II equation. We are also able to express the leading term explicitly in terms of the Ariy function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源