论文标题
代数Cochains,双变量JLO Cocycle和Mathai-Quillen形式
Algebra cochains, the bivariant JLO cocycle and the Mathai-Quillen form
论文作者
论文摘要
这是作者首次调查Quillen的Superconnection形式主义,他通过代数Cochains在酒吧结构上对(周期性的)环状共生的结构,而Kasparov Bimodules for KK理论。在本文中,我们通过通过双变量JLO Cocycle得出Mathai-Quillen Thom形式的略微扩展。主要思想(实际上并不是什么新鲜事物)是,应该将KK-Cycles视为超级连接形式。这些方法将应用于其他地方的其他上下文。
This is a first investigation by the author of the similarity between Quillen's superconnection formalism, his constructions of (periodic) cyclic cocycles via algebra cochains on a bar construction, and Kasparov bimodules for KK-theory. In this article, we do so by deriving a slight extension of the Mathai-Quillen Thom form via a bivariant JLO cocycle. The main idea (which is in fact not really new) is that KK-cycles should be thought of as superconnection forms; these methods will be applied to other contexts elsewhere.