论文标题

使用三操作员ADMM联合学习

Federated Learning Using Three-Operator ADMM

论文作者

Kant, Shashi, Silva Jr., José Mairton B. da, Fodor, Gabor, Göransson, Bo, Bengtsson, Mats, Fischione, Carlo

论文摘要

联合学习(FL)已成为分布式机器学习范式的实例,避免了用户方面生成的数据的传输。尽管数据未传输,但由于用户设备的计算资源有限,Edge设备必须处理有限的通信带宽,数据异质性和Straggler效应。克服此类困难的突出方法是Fedadmm,它基于经典的两人共识交流方向乘数(ADMM)。 FL算法的常见假设,包括Fedadmm,是他们仅使用用户方面而不在边缘服务器上使用数据来学习全局模型。但是,在边缘学习中,预计服务器将在基站附近,并可以直接访问富数据集。在本文中,我们认为利用Edge服务器上的丰富数据比仅利用用户数据集更有益。具体而言,我们表明,仅使用代表边缘服务器上数据的附加虚拟用户节点的FL应用效率低下。我们提出了FedTop-admm,该fedTop-admm概括了FedAdmm,并基于三操作员ADMM型技术,该技术利用了边缘服务器上平稳的成本函数,以学习与Edge设备平行的全局模型。我们的数值实验表明,FedTop-ADMM的通信效率最高为33 \%,以达到相对于FedAdmm的所需测试准确性,包括Edge Server上的虚拟用户。

Federated learning (FL) has emerged as an instance of distributed machine learning paradigm that avoids the transmission of data generated on the users' side. Although data are not transmitted, edge devices have to deal with limited communication bandwidths, data heterogeneity, and straggler effects due to the limited computational resources of users' devices. A prominent approach to overcome such difficulties is FedADMM, which is based on the classical two-operator consensus alternating direction method of multipliers (ADMM). The common assumption of FL algorithms, including FedADMM, is that they learn a global model using data only on the users' side and not on the edge server. However, in edge learning, the server is expected to be near the base station and have direct access to rich datasets. In this paper, we argue that leveraging the rich data on the edge server is much more beneficial than utilizing only user datasets. Specifically, we show that the mere application of FL with an additional virtual user node representing the data on the edge server is inefficient. We propose FedTOP-ADMM, which generalizes FedADMM and is based on a three-operator ADMM-type technique that exploits a smooth cost function on the edge server to learn a global model parallel to the edge devices. Our numerical experiments indicate that FedTOP-ADMM has substantial gain up to 33\% in communication efficiency to reach a desired test accuracy with respect to FedADMM, including a virtual user on the edge server.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源