论文标题

双重迷人的重子与袋子模型的半衰减衰减

Semileptonic decays of doubly charmed baryons with bag model

论文作者

Geng, Chao-Qiang, Liu, Chia-Wei, Zhou, Aowen, Yu, Xiao

论文摘要

我们使用包型研究了$ b_ {cc} $ $ {\ rightArrow} $ $ {\ rightArrow} $ b_c \ ell^+en^+en^+el $的半衰减的衰变,其中$ \ ell $ = $ = $(e,μ)$,$ b_ {cc} $ {cc} $ = $ = $( $ω_{cc}^+$),$ b_c $是具有$ j^p = 1/2^+$的单身诱人的baryons。我们获得了$γ(ξ_{cc}^{++} {\ rightArrow}ξ_c^+e^+e^+n+n的衰减宽度,ξ_c^{\ prime+} 0.34 \ pm 0.06,0.76 \ pm 0.06)\ times 10^{ - 14} $ 〜gev,$γ(ξ_{cc}^+\ rightArrowξ_c^0e^0e^+v+v+v+ν_e,ξ_c^{\ prime0} 11 \ pm 1,1.5 \ pm 0.1)\ times 10^{ - 14} $ 〜gev和$γ(ω__{ω_{cc}^+\ rightArrowω__c^0 e^+v+ν_e,ξ_c^0e^0e^+ne^+v+c^+ν_e, 0.77 \ pm 0.06)\ times 10^{ - 14} $ 〜GEV。我们还得到$γ$($ b_ {cc} $ $ {\ rightArrow} $ $ $ $ $b_cμ^+ν_μ$)/$γ$($ b_ {cc} $ $ {\ rightarrow} $ $ $ $ $ $ $ $ b_ce^+ν_e$)此外,我们讨论了$ su(3)$破坏性效果,分为三个方面:相位空间差异,观众夸克和透过夸克的重叠。特别是,我们表明破裂效应由相空间差异主导,该差异可能大至25 \%。明确地,我们发现$γ(ξ_{cc}^{++} \toλ_c^+ e^+ e^+ e^+ n+ n+ n+ n v_ {cs}^2/γ(ξ_{cc}^{cc}^{++} {++} \ $ su(3)$风味对称。

We study the semileptonic decays of $B_{cc}$ ${\rightarrow}$ $B_c\ell^+ν_\ell$ with the bag model, where $\ell$ = $(e, μ)$, $B_{cc}$ = $(Ξ_{cc}^{++}$, $Ξ_{cc}^+$, $Ω_{cc}^+$), and $ B_c$ are the singly charmed baryons with $J^P= 1/2^+$. We obtain the decay widths of $Γ(Ξ_{cc}^{++}{\rightarrow}Ξ_c^+e^+ν_e, Ξ_c^{\prime+}e^+ν_e, Λ_c^+e^+ν_e, Ω_c^+ e^+ν_e) =(5.1\pm 0.1 , 11\pm 1, 0.34\pm 0.06, 0.76\pm 0.06)\times 10^{-14}$~GeV, $Γ(Ξ_{cc}^+\rightarrow Ξ_c^0e^+ν_e, Ξ_c^{\prime0}e^+ν_e , Σ_c^0e^+ν_e) = (5.1\pm 0.6, 11\pm 1, 1.5\pm 0.1) \times 10^{-14}$~GeV, and $Γ(Ω_{cc}^+\rightarrow Ω_c^0 e^+ν_e, Ξ_c^0e^+ν_e , Ξ_c^{\prime0} e^+ν_e) = (22\pm 2, 0.32 \pm 0.04, 0.77\pm 0.06)\times 10^{-14}$~GeV. We also get that $Γ$($B_{cc}$ ${\rightarrow}$ $B_cμ^+ν_μ$)/$Γ$($B_{cc}$ ${\rightarrow}$ $B_ce^+ν_e$) = $0.97\sim 1.00$. In addition, we discuss the $SU(3)$ flavor breaking effects, classified into three aspects: phase space differences, spectator quarks, and overlappings of the transited quarks. In particular, we show that the breaking effects are dominated by the phase space differences, which can be as large as 25\%. Explicitly, we find that $Γ(Ξ_{cc}^{++} \to Λ_c ^+ e^+ ν_e) V_{cs}^2/Γ(Ξ_{cc}^{++} \to Ξ_c ^+ e^+ ν_e )V_{cd}^2 = 1.24$, which is expected as $1$ under the exact $SU(3)$ flavor symmetry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源