论文标题

使用JPEG编码器的输出的无误强大的JPEG隐身摄影

Errorless Robust JPEG Steganography using Outputs of JPEG Coders

论文作者

Butora, Jan, Puteaux, Pauline, Bas, Patrick

论文摘要

强大的隐肌是一种隐藏图像中秘密消息的技术,因此可以在附加图像处理后恢复该消息。最受欢迎的加工操作之一是JPEG重新压缩。不幸的是,当今解决此问题的大多数隐形方法仅提供了恢复秘密的概率保证,因此并非没有错误。这是不可接受的,因为即使是单个意外的更改也可能使整个消息被加密,则无法阅读。我们建议通过在重新压缩过程中检查其行为来创建一组强大的DCT系数,这需要访问目标JPEG压缩机。这是通过将DCT系数分为64个非重叠晶格来完成的,因为在重新压缩过程中,一个嵌入变化可能会影响来自同一DCT块的许多其他系数。然后将鲁棒性与标准的隐志成本结合使用,从而为JPEG重新压缩创造了晶格嵌入方案。通过实验,我们证明了稳健集的大小和方案的安全性取决于嵌入过程中格子的排序。我们使用三个典型的JPEG压缩机和{\ it Slack}即时消息传递应用程序来验证提出方法的有效性。我们对各种嵌入有效载荷的安全性,三种不同的订购方式以及一系列质量因素的安全性。最后,该方法是通过构造毫无疑问的,这意味着嵌入式消息将始终可读。

Robust steganography is a technique of hiding secret messages in images so that the message can be recovered after additional image processing. One of the most popular processing operations is JPEG recompression. Unfortunately, most of today's steganographic methods addressing this issue only provide a probabilistic guarantee of recovering the secret and are consequently not errorless. That is unacceptable since even a single unexpected change can make the whole message unreadable if it is encrypted. We propose to create a robust set of DCT coefficients by inspecting their behavior during recompression, which requires access to the targeted JPEG compressor. This is done by dividing the DCT coefficients into 64 non-overlapping lattices because one embedding change can potentially affect many other coefficients from the same DCT block during recompression. The robustness is then combined with standard steganographic costs creating a lattice embedding scheme robust against JPEG recompression. Through experiments, we show that the size of the robust set and the scheme's security depends on the ordering of lattices during embedding. We verify the validity of the proposed method with three typical JPEG compressors and the {\it Slack} instant messaging application. We benchmark its security for various embedding payloads, three different ways of ordering the lattices, and a range of Quality Factors. Finally, this method is errorless by construction, meaning the embedded message will always be readable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源