论文标题

扇贝壳星星可以在其磁场中捕获灰尘吗?

Can scallop-shell stars trap dust in their magnetic fields?

论文作者

Sanderson, Hannah, Jardine, Moira, Cameron, Andrew Collier, Morin, Julien, Donati, Jean-Francois

论文摘要

从开普勒和苔丝任务中出现的难题之一是在年轻的开放式群集和星形形成区域中的一小部分快速旋转的M矮人的光弯曲中存在无法解释的倾角。我们提出了一种可能的解释的理论研究 - 这些解释是由被困在恒星磁场中的尘埃云引起的。观察到的倾角的深度和持续时间使我们能够直接估计尘埃云的线性范围及其与旋转轴的距离。发现倾角在0.4-4.8%之间。我们发现它们的距离接近联合旋转半径:稳定点的典型位置可以将带电颗粒捕获在恒星磁层中。我们估计由于与冠状气体碰撞而导致的灰尘颗粒所获得的电荷,因此确定了可以在磁性支撑的最大晶粒尺寸,由于气阻力而导致的停止距离以及灰尘颗粒可以从稳定点扩散的时间尺度。使用活性M矮人V374 PEG的观察衍生的磁场,我们对这些尘埃云的分布进行建模并产生合成光曲线。我们发现,对于1微米粉尘晶粒,光曲线的下降为1%-3%,并且可以支撑$ 10^{12} $ kg的订单。我们得出的结论是,磁性陷阱的尘埃云(可能来自剩余的圆盘积聚或潮汐干扰的行星或彗星体)能够解释开普勒和苔丝数据中的周期性倾角。

One of the puzzles to have emerged from the Kepler and TESS missions is the existence of unexplained dips in the lightcurves of a small fraction of rapidly-rotating M dwarfs in young open clusters and star-forming regions. We present a theoretical investigation of one possible explanation - that these are caused by dust clouds trapped in the stellar magnetic fields. The depth and duration of the observed dips allow us to estimate directly the linear extent of the dust clouds and their distances from the rotation axis. The dips are found to be between 0.4-4.8%. We find that their distance is close to the co-rotation radius: the typical location for stable points where charged particles can be trapped in a stellar magnetosphere. We estimate the charge acquired by a dust particle due to collisions with the coronal gas and hence determine the maximum grain size that can be magnetically supported, the stopping distance due to gas drag and the timescale on which dust particles can diffuse out of a stable point. Using the observationally-derived magnetic field of the active M dwarf V374 Peg, we model the distribution of these dust clouds and produce synthetic light curves. We find that for 1 micron dust grains, the light curves have dips of 1% - 3% and can support masses of order of $10^{12}$kg. We conclude that magnetically-trapped dust clouds (potentially from residual disc accretion or tidally-disrupted planetesimal or cometary bodies) are capable of explaining the periodic dips in the Kepler and TESS data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源