论文标题
与理性(非内部)功能相关的De Branges-Rovnyak空间上的组成操作员
Composition Operators On De Branges-rovnyak Spaces Associated To A Rational (Not Inner) Function
论文作者
论文摘要
在本文中,我们表征了来自De Branges-Rovnyak Space $ \ Mathcal H(B)$的组合操作员的界限,紧凑性和Hilbert-Schmidt属性,而当$ b $是$ H^\ iffty $的封闭式单位球(但不是有限的Blaschke blaschke blaschke blaschke blaschke affice)时。特别是,我们扩展了D. Sarason和J.N.获得的一些结果。席尔瓦(Silva)在本地迪里奇(Dirichlet)空间的背景下。
In this paper, we characterize the boundedness, the compactness and the Hilbert-Schmidt property for composition operators acting from a de Branges-Rovnyak space $\mathcal H(b)$ into itself, when $b$ is a rational function in the closed unit ball of $H^\infty$ (but not a finite Blaschke product). In particular, we extend some of the results obtained by D. Sarason and J.N. Silva in the context of local Dirichlet spaces.