论文标题

用于本地化和通信的大量MIMO通道测量数据集

Massive MIMO Channel Measurement Data Set for Localization and Communication

论文作者

Colpaert, Achiel, De Bast, Sibren, Guevara, Andrea P., Cui, Zhuangzhuang, Pollin, Sofie

论文摘要

需要估算渠道状态信息(CSI),以获得可靠和高效的通信,但是,位置信息隐藏在内部,可以进一步利用。本文介绍了大量多输入多输出(Mamimo)测试床的详细说明,并提供了一组实验性位置标记的CSI数据。在本文中,我们专注于用于收集多个CSI数据集的Mamimo Testbend的硬件和软件的设计。我们还显示这些数据可用于基于学习的本地化和增强的通信研究。这项工作中介绍的数据集已为研究界充分使用。我们显示基于CSI的联合通信和传感处理管道可以根据收集的数据集进行评估和设计。具体而言,在数据集中训练的卷积神经网络(CNN)获得的本地化输出用于安排用户提高通信系统的光谱效率(SE)。最后,我们为进一步利用此数据集并创建未来数据集的方向提出了有希望的方向。

Channel state information (CSI) needs to be estimated for reliable and efficient communication, however, location information is hidden inside and can be further exploited. This article presents a detailed description of a Massive Multi-Input Multi-Output (MaMIMO) testbed and provides a set of experimental location-labelled CSI data. In this article, we focus on the design of the hardware and software of a MaMIMO testbed for gathering multiple CSI data sets. We also show this data can be used for learning-based localization and enhanced communication research. The data set presented in this work is made fully available to the research community. We show a CSI-based joint communication and sensing processing pipeline can be evaluated and designed based on the collected data set. Specifically, the localization output obtained by a convolutional neural network (CNN) trained on the data sets is used to schedule users for improving the spectral efficiency (SE) of the communication system. Finally, we pose promising directions on further exploiting this data set and creating future data sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源