论文标题
steiner连接增强和划分的多层次最大流量
Steiner Connectivity Augmentation and Splitting-off in Poly-logarithmic Maximum Flows
论文作者
论文摘要
我们为Steiner连接增强问题提供了几乎线性的时间算法:给定图形,找到一组最小(或最小重量)的边缘,其添加使给定的终端组合$τ$连接(对于任何给定的$τ> 0 $)。我们算法的运行时间由对任何最大流量子例程的polygarithmic调用主导。使用最近的几乎线性时间最大流量算法(Chen等人,焦点2022),我们也获得了几乎线性的运行时间。即使仅在两个端子中,这也紧密到聚类因子。在我们的工作之前,仅因全球连通性增强的特殊情况而闻名,几乎是线性的(实际上,接近线性的)运行时间,即当所有顶点都是终端时(Cen等人,STOC 2022)。 我们还将算法扩展到密切相关的施泰纳分裂问题,在该问题中,在维护给定终端集的(Steiner)连接性的同时,在顶点上的边缘必须为{\ em split-off}。在我们的工作之前,几乎是线性的时间算法仅因全球连通性的特殊情况而闻名(Cen等,Stoc 2022)。超出全球连通性的唯一已知的概括是使用较慢的算法来保留所有成对连接性,该算法将$ n $调用到全对最大流量(或Gomory-hu Tree)子例程(Lau and Yung,Sicomp,Sicomp 2013),而对Polylog(n)在这项工作中的polylog(n)的最大流量下属呼叫。
We give an almost-linear time algorithm for the Steiner connectivity augmentation problem: given an undirected graph, find a smallest (or minimum weight) set of edges whose addition makes a given set of terminals $τ$-connected (for any given $τ> 0$). The running time of our algorithm is dominated by polylogarithmic calls to any maximum flow subroutine; using the recent almost-linear time maximum flow algorithm (Chen et al., FOCS 2022), we get an almost-linear running time for our algorithm as well. This is tight up to the polylogarithmic factor even for just two terminals. Prior to our work, an almost-linear (in fact, near-linear) running time was known only for the special case of global connectivity augmentation, i.e., when all vertices are terminals (Cen et al., STOC 2022). We also extend our algorithm to the closely related Steiner splitting-off problem, where the edges incident on a vertex have to be {\em split-off} while maintaining the (Steiner) connectivity of a given set of terminals. Prior to our work, a nearly-linear time algorithm was known only for the special case of global connectivity (Cen et al., STOC 2022). The only known generalization beyond global connectivity was to preserve all pairwise connectivities using a much slower algorithm that makes $n$ calls to an all-pairs maximum flow (or Gomory-Hu tree) subroutine (Lau and Yung, SICOMP 2013), as against polylog(n) calls to a (single-pair) maximum flow subroutine in this work.