论文标题
穿孔域上两级Schwarz方法的Trefftz样粗空间
A Trefftz-like coarse space for the two-level Schwarz method on perforated domains
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We consider a new coarse space for the ASM and RAS preconditioners to solve elliptic partial differential equations on perforated domains, where the numerous polygonal perforations represent structures such as walls and buildings in urban data. With the eventual goal of modelling urban floods by means of the nonlinear Diffusive Wave equation, this contribution focuses on the solution of linear problems on perforated domains. Our coarse space uses a polygonal subdomain partitioning and is spanned by Trefftz-like basis functions that are piecewise linear on the boundary of a subdomain and harmonic inside it. It is based on nodal degrees of freedom that account for the intersection between the perforations and the subdomain boundaries. As a reference, we compare this coarse space to the well-studied Nicolaides coarse space with the same subdomain partitioning. It is known that the Nicolaides space is unable to prevent stagnation in convergence when the subdomains are not connected; we work around this issue by separating each subdomain by disconnected component. Scalability and robustness are tested for multiple data sets based on realistic urban topography. Numerical results show that the new coarse space is very robust and accelerates the number of Krylov iterations when compared to Nicolaides, independent of the complexity of the data.