论文标题

实际二次场的几何不变的稀疏等分

Sparse Equidistribution of Geometric Invariants of Real Quadratic Fields

论文作者

Humphries, Peter, Nordentoft, Asbjørn Christian

论文摘要

Duke,Imamoglu和Tóth最近构建了一种新的几何不变,一种双曲线孔,与每个狭窄的理想类别相关联。此外,他们已经表明,这些双曲线孔的投影在模块化表面$γ\ backslash \ mathbb {h} $均衡分布属的基本歧视群体中平均是真实Quadratic领域的基本歧视$ d $。 我们扩展了双曲线孔的构造,以允许建立一个水平结构,类似于Heegner点和封闭$ Q $的封闭地球固定。此外,我们在多个方向上完善了此等分分配结果。首先,我们在级别的方面研究了稀疏的等分分配,在该方面,我们证明了$ Q $ Q $双曲线孔的等分分配时,仅限于$γ\ backslash \ Mathbb {h} $ in $γ_0(q)\ backslash \ backslash \ backslash \ m m iathbb {其次,我们探讨了亚组方面的稀疏等分,即平均在狭窄班级的小亚组上等分。第三,我们证明了小规模的等分,并为差异提供了上限。 这些改进的背后是对在Adèlic时期积分方面在这些等分分配问题中产生的Weyl总和的新解释,而这些等级积分又与Rankin-Selberg $ L $ functions通过Waldspurger的公式有关。剩余的关键输入是这些$ L $ functions的混合子凸界和SUP-NORM问题的某些同源版本。

Duke, Imamoglu, and Tóth have recently constructed a new geometric invariant, a hyperbolic orbifold, associated to each narrow ideal class of a real quadratic field. Furthermore, they have shown that the projection of these hyperbolic orbifolds onto the modular surface $Γ\backslash \mathbb{H}$ equidistributes on average over a genus of the narrow class group as the fundamental discriminant $D$ of the real quadratic field tends to infinity. We extend this construction of hyperbolic orbifolds to allow for a level structure, akin to Heegner points and closed geodesics of level $q$. Additionally, we refine this equidistribution result in several directions. First, we investigate sparse equidistribution in the level aspect, where we prove the equidistribution of level $q$ hyperbolic orbifolds when restricted to a translate of $Γ\backslash \mathbb{H}$ in $Γ_0(q) \backslash \mathbb{H}$, which presents some new interesting features. Second, we explore sparse equidistribution in the subgroup aspect, namely equidistribution on average over small subgroups of the narrow class group. Third, we prove small scale equidistribution and give upper bounds for the discrepancy. Behind these refinements is a new interpretation of the Weyl sums arising in these equidistribution problems in terms of adèlic period integrals, which in turn are related to Rankin-Selberg $L$-functions via Waldspurger's formula. The key remaining inputs are hybrid subconvex bounds for these $L$-functions and a certain homological version of the sup-norm problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源