论文标题
4DVARNET-SSH:Nadir和Wide-Swath卫星高度计的变异插值方案的端到端学习
4DVarNet-SSH: end-to-end learning of variational interpolation schemes for nadir and wide-swath satellite altimetry
论文作者
论文摘要
从卫星高度计数据中重建海面电流是空间海洋学的关键挑战,尤其是即将进行的宽swath SWOT(表面海洋和水形图)高度计。然而,操作系统通常无法检索低于100公里的水平尺度和低于10天的时间尺度的中尺度动力学。在这里,我们通过4DVARNET框架解决了这一挑战,这是一种以各种数据同化公式为支持的端到端神经方案。我们介绍了专门用于卫星高度计数据的4DVARNET方案的参数化。在观察系统仿真实验(NATL60)中,我们证明了针对Nadir和Nadir+SWOT高度计的相关性,用于在上海动力学方面对两个对比的病例研究区域进行的两个对比案例研究区域的相关性。我们报告了有关重建误差的30%至60%的运营最佳插值的相对改进。有趣的是,对于Nadir+SWOT高度计配置,我们达到了70公里和7天以下的分辨时空量表。该代码是开源的,以实现生殖力和未来的协作发展。除了适用于大规模域之外,我们还解决了拟议学习设置的不确定性量化问题和概括属性。我们讨论了其他海洋数据同化和太空海洋学挑战的未来研究途径和扩展。
The reconstruction of sea surface currents from satellite altimeter data is a key challenge in spatial oceanography, especially with the upcoming wide-swath SWOT (Surface Ocean and Water Topography) altimeter mission. Operational systems however generally fail to retrieve mesoscale dynamics for horizontal scales below 100km and time-scale below 10 days. Here, we address this challenge through the 4DVarnet framework, an end-to-end neural scheme backed on a variational data assimilation formulation. We introduce a parametrization of the 4DVarNet scheme dedicated to the space-time interpolation of satellite altimeter data. Within an observing system simulation experiment (NATL60), we demonstrate the relevance of the proposed approach both for nadir and nadir+swot altimeter configurations for two contrasted case-study regions in terms of upper ocean dynamics. We report relative improvement with respect to the operational optimal interpolation between 30% and 60% in terms of reconstruction error. Interestingly, for the nadir+swot altimeter configuration, we reach resolved space-time scales below 70km and 7days. The code is open-source to enable reproductibility and future collaborative developments. Beyond its applicability to large-scale domains, we also address uncertainty quantification issues and generalization properties of the proposed learning setting. We discuss further future research avenues and extensions to other ocean data assimilation and space oceanography challenges.