论文标题

参考调速器设计在不确定的多项式约束的情况下

Reference Governor Design in the Presence of Uncertain Polynomial Constraints

论文作者

Schieni, Rick, Zhao, Chengwei, Malisoff, Michael, Burlion, Laurent

论文摘要

参考调查员是附加方案,用于修改轨迹以防止受控的动态系统违反约束,因此在航空航天,机器人和其他工程应用中起着越来越重要的作用。在这里,我们为系统的多项式约束依赖于未知的有限参数提供了一种新颖的参考调节设计。这是与早期的参考调查者的重大差异,在这种情况下,约束是线性或已知的,因为在这里我们将不确定性转移到约束中,而不是将它们转移到封闭的循环动力学中,这极大地简化了确定约束未来进化的任务。与我们先前对具有多项式约束的参考调查者的处理不同,这将约束转化为依赖系统增强状态的线性限制,在这里,我们将约束因子转换为依赖系统状态和不确定参数的线性限制。凸度使我们能够为不确定的预稳定线性系统计算最大输出设置。我们表明,在计算和传播多项式约束时,仅考虑不确定参数的极端值就足够了。我们使用不确定的民用飞机纵向动力学来说明我们的方法,该飞机是使用干扰补偿方法控制的,并且需要满足输入和状态约束,以及我们的参考调速器方法确保始终满足安全限制。

Reference governors are add-on schemes that are used to modify trajectories to prevent controlled dynamical systems from violating constraints and so are playing an increasingly important role in aerospace, robotic, and other engineering applications. Here we present a novel reference governor design for systems whose polynomial constraints depend on unknown bounded parameters. This is a significant departure from earlier treatments of reference governors, where the constraints were linear or known, because here we transfer the uncertainties into the constraints instead of having them in the closed loop dynamics, which greatly simplifies the task of determining future evolution of the constraints. Unlike our earlier treatment of reference governors with polynomial constraints, which transformed the constraints into linear ones that depend on an augmented state of the system, here we transform the constraints into linear ones that depend on both the system's state and uncertain parameters. Convexity allows us to compute the maximal output admissible set for an uncertain pre-stabilized linear system. We show that it is sufficient to only consider the extreme values of the uncertain parameters when computing and propagating the polynomial constraints. We illustrate our method using an uncertain longitudinal dynamics for civilian aircraft, which is controlled using a disturbance compensation method and needs to satisfy input and state constraints, and where our reference governor method ensures that safety constraints are always satisfied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源